Percent Composition, Empirical Formula and Molecular Formula

Percent Composition

g of one element (100) total g all elements

From a practical point of view, find the molar mass. Put the mass of each element as the numerator, and the molar mass as the denominator.

Determine the % Composition of Ca(OH)₂

Ca 1x40.08=40.08

O 2x16.00=32.00

H 2x1.008= 2.016

74.10 g/mol

%Ca = 40.08(100)/74.10 = 54.09 % Ca

%O = 32.00(100)/74.10 = 43.18% O

%H = 2.016(100)/74.10 = 2.72 % H

99.99%

Empirical and Molecular Formulas

Empirical Formula = the lowest whole number ratio of atoms in the molecule.

Molecular Formula = the actual whole number ratio of atoms in the molecule.

	Examples		
Compound	<u>Molecular</u> <u>Formula</u>	Empirical Formula	
Water	H_2O	$\rm H_2O$	
Hydrogen Peroxide	H_2O_2	НО	
Ethane	C_2H_6	CH_3	
Benzene	C_6H_6	CH	

Converting % Comp. To Empirical Formula

- 1. Write the % as grams.
- 2. G to mol for all elements.
- 3. Divide by the smallest # of moles.
- 4. Round to nearest whole # if within + or .1 from whole number.
- 5. Multiply all elements by a factor to produce whole #'s (if needed).
- 6. Convert ratio to formula.

Find the empirical formula of a substance that is 75% C and 25% H.

Find the empirical formula of a compound that is 2.374% H, 14.14% C and 83.48% Cl.

```
2.355 \text{ mol H} = 2 \text{ H}
```

1.177 mol

1.177 mol C = 1 C

1.177 mol

2.355 mol C1 = 2 C1

1.177 mol

Empirical Formula is CH₂Cl₂.

Determine the empirical formula of a compound that is 18.01% C, 2.267% H and 79.73% Cl.

 $18.01 \text{ g C} \mid 1 \text{ mol C}$ = 1.500 mol C

| 12.01 g C

 $2.267 \text{ g H} \mid 1 \text{ mol H}$ = 2.249 mol H

|1.008 g H|

 $79.73g Cl \mid 1 \text{ mol Cl}$ = 2.249 mol Cl

| 35.45 g Cl

1.500 mol C/1.500 mol = 1 C

2.249 mol H/1.500 mol = 1.499 H

2.249 mol Cl/1.500 mol = 1.499 Cl

Multiply all values by 2 to get whole numbers.

2 C, 2.998 H = 3 H & 2.998 Cl = 3 Cl

Empirical formula is C₂H₃Cl₃

1 C

1.333 H

1.333 Cl

Multiply all values by 3 to get whole numbers.

3 C, 3.999 H = 4 H & 3.999 Cl = 4 Cl

Empirical formula is C₃H₄Cl₄

Molecular formula from empirical formula

The molecular formula is always a multiple of the empirical formula, and the molar mass of the real compound is always a multiple of the molar mass for just the empirical formula

Hydrogen peroxide is H_2O_2 with a molar mass of 34.02 g/mol. The empirical formula is HO with a molar mass of 17.01 g/mol.

34.02/17.01 = 2 which is the ratio between the molecular formula and the empirical formula.

Empirical formula is CH. Molar mass of molecule is 78 g/mol. Find molecular formula.

- 78/13 = 6
- CH times $6 = C_6H_6$.

- Molar mass of molecule is between 135 and 155. Empirical formula is CHO.
- What is molar mass of CHO?
- 29.02
- 135/29.02 = 4.65
- 155/29.02 = 5.34
- What is the whole number in this range? 5
- Molecular formula is 5 times CHO or $C_5H_5O_5$.

Hydrates

- Hydrates are solids with water trapped in the crystal in an organized pattern.
- The formula without the water is called the anhydrate, or it is "anhydrous".
- The formula of the hydrate includes a "•", number and H₂O.
- For example MgSO₄•2H₂O

Hydrates

- Molar mass of the hydrate is the molar mass of the anhydrate plus the waters of hydration.
- Hydrate = $MgSO_4 \cdot 2H_2O$
- Anhydrate = $MgSO_4$
- 2 waters of hydration
- Molar mass of MgSO₄ = 120.38
- Add $2 \times 18.02 = 36.04$ to 120.38 to get 156.42

$$Mg = 24.31 = 24.31$$

 $S = 32.07 = 32.07$
 $O = 4 \times 16.00 = 64.00$
 $= 120.38$

% of water
Mass of waters of hydration x 100 Molar mass of the hydrate
36.04 (100) = 23% water 156.42